Sequences and Series of Functions (Rudin)

Stone-Weierstrass Theorem: Let f : [a,b] — R be continuous. Then
there exists a sequence of polynomials (P, (z)) such that converges uniformly
to f on [a,b].

Proof: Consider any continuous function g : R — R that satisfies g(z) = 0
for x ¢ [0,1]. For each n > 1 set
(1 — )"

Onl) = f_ll (1 —a2)n dr

The area under the curve y = @, (z) over [—1,1] is equal to 1, and has the
shape of a bell curve with most of it’s area concentrated in a narrow band
above = 0. The polynomials Q1o(z), Q20(x), Q30(z) are plotted below:
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Pu(z) = / oz + D0 (1) dt.
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For 0 < x <1 define

P,(x) is a polynomial of degree < 2n:
1 z+1 k k ' o+1 '
[ aterot = [ gt du=30 (et [T gt du
-1 z-1 i=0 z—1

We have )
IPa(z) — 9(o)] < / Jgle+ )= o(@)|Qu0) .



Let M = sup g(z). Since g is uniformly continuous on R, there exists dx > 0
such that [¢| < 05 implies |g(x +t) — g(x)| < & for all x. This yields

6 1

—0k k
IPu(e) — g(a)| < 2M / Q) it Qa2 [ Qi ar

We have
1 [ p 1
— nlt) dt < —.

We also have

/1(1—x2)”dm22/1(1—m)”dx: 2

1 0 n+1’
hence for d; < || < 1 we have

n+1

; (1—a3)™.

|@n(2)] <

Therefore )
|Pn(z) —g(x)] <2M(n+1)(1 — (5,3)" + z

for0 <z <1,ie.
2\n 1
1P = gll < 2M(n+1)(1 = 6)" + 1.

. For sufficiently large n,

Let ¢ > 0 be given. Choose k so that 5
Therefore P, — ¢ uniformly

1

k
2M(n +1)(1 = 67)" < §, hence ||, — g]| <
on [0, 1].

Given f : [a,b] — R, g(z) = f(z) — f(a) — W(m — a) satisfies g(a) =
g(b) = 0 and h(z) = g((b — a)x + a) satisfies h(0) = h(1) = 0. If P,(x) —
h(z) uniformly on [0,1], then P,(z) — ¢((b — a)z + a) on [0, 1], therefore
Po.(=%) — g(x) uniformly on [a, b], therefore

r—a f(b) = f(a)
) @)+ = —

<
€.

B (r —a) = f(z)

uniformly on [a, b].



Corollary: If f(0) = 0and P,(x) — f uniformly on [—a, a], then P, (0) — 0,
hence P,(x) — P,(0) — f uniformly on [—a,a]. So f can be uniformly
approximated by a polynomial with zero constant term.

Defintion: An algebra A of functions f : E — R is a set of functions closed
under addition, multiplication, and scalar multiplication. An algebra A is
said to separate points on F if for each x # y in E there exist f, g € A such
that f(z) # g(y), and to vanish at x € E if f(x) =0 for all f € A.

Theorem: Let A be an algebra of bounded functions from E to R. Let
|| f|| = supgep f(z). Then d(f,g9) = ||f — ¢|| is a metric on A and A is an
algebra of bounded functions from F to R.

Proof: Cleatly ||f — f|[=0, f #g = [[f —gll > 0, [[f =gl = [lg = [l
Now let f,g,h € A be given. For any x € F,

[f (@) +g(z)| < [f(2)] + [g(x)] < [F]+ llgll;
therefore || f + g|| < || f|| + ||g||. This implies
Lf =2l =1[(f —9) + (g =W < [If = gll + [lg — Al].
Also, for any = € F,

[F(@)g(@)] < [ fMlg()| < gl

therefore || fgl[ < || f[[llgl|. Clearly [|cf[| = |c|l[f]| for all ¢ € R.
Now suppose f, = f, g» — ¢, and ¢ € R. Then

o+ 90— f=gll = lfu = Fll + |lgn — gl| = 0,
hence f, + g, — f + g. Also,

[ fngn—Fll < N fagn— Fagll+ 1 fag—Fall <A fallllgn—gll+11fn—fIlllgll — O,

therefore f,,g, — fg. Finally,
llefn = cfll = lelllfo = fI] =0,

therefore cf,, — cf.

Given f, — f, for any x € F we have
[f (@) < [f (@) = falo)| + [ fula)| <A = full +11fall < T+ 1]l
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for n > ng. Therefore ||f|| < 1+ ||fuoll-

Lemma: Let v # v € R" and a,b € R be given. Then there exists
p(1,...,x,) € Rlzy, ..., x,] such that p(u) = a and p(v) = b.
Proof: Set q(x1,...,2,) =27+ + 22 + 1. Since u # v, x(u) # x5 (v) for
some k. We can set
_ GQ($1,...,$n)($k—Uk) bQ(fEh,ZEn)(fEk—Uk)

q(ug, .. up) (up — vg) qug, .y up)(vg — ug)

p(1, ..., x,)

Theorem: Let K C R™ be a compact set. Then a function f : K — R is
continuous if and only if there exists a sequence (f,) in R[zy,...,x,] such
that f, — f uniformly on K.

Proof: Let A be the set of polynomial functions on K. Suppose f, — f
uniformly, where each f,, € A. Then f is continuous: Let € > 0 be given.
Choose n so that ||f, — f|| < 5. Since f, is continuous on K and K is
compact, f, is uniformly continuous on K, hence there exists § > 0 such

that |z —y| < ¢ implies |f,(7) — fu(y)| < 5. Hence |v — y[ < § implies

@) = FO) < @) = Ful@)] + | fal@) = 0] + | Falv) = F0)] <
1f = fall + 5+l = fll <

Conversely, let f : K — R be continuous. We will show that f € A as
follows:

1. Forall g € A, |g| € A. Proof: Let g € A and ¢ > 0 be given. Choose
a polynomial P(z) with zero constant term such that ||P(z) — |- ||| < § on
[=llgll llgll]. Then [[P(g) —g[[| < 5. Given g, — g, we have P(g,) — P(g).
Choose n so that ||P(g,) — P(g)|| < 5. Hence ||P(g,) — |g]|| < €. Since
P(gn) € A, |g] € A.

2. If g,h € A, then max(g, h) € A and min(g, h) € A. Proof:

_g+h  |g—h|
2 + 2

max(g, h)

min(g, h) = g + h — max(g, h).



3. Fix x € K. Then there exists f, € A such that f,(z) = f(x) and

fo(k) > f(k) —€

for all k € K. Proof: For each y € K choose g, € A such that g,(z) = f(z)
and g,(y) = f(y). Then y € (g, — f)~'(e, 00), hence

K = J{(g, = /) ((=e,00)) sy € K},

yeK

hence by compactness of K there exist yq,...,y, € K such that for each
k € K there exists ¢ such that g, (k) > f(k) —e. We can set f, =
max(gy,, - - -, gy, ). In particular, f,(z) = .

4. We z € (f. — ) '((—o0,¢€)) for each z € K, hence

K = \J{(fe = /)" (=00,6)) 1y € K},

zeK

hence by compactness of K there exist z1, ..., 2, € K such that for each k €
K there exists i such that f, (k) < f(k)+e. Setting fo = min(fs,, -, fz,) €
A, we have ||f. — f|| < e. Since € is arbitrary, f € A.



